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Technological developments in both the collection and analysis of molecular genetic data
over the past few years have provided new opportunities for an improved understanding
of the global response to pathogen exposure. Such developments are particularly dramatic
for scientists studying the pig, where tools to measure the expression of tens of thousands
of transcripts, as well as unprecedented data on the porcine genome sequence, have com-
bined to expand our abilities to elucidate the porcine immune system. In this review, we
describe these recent developments in the context of our work using primarily microar-
rays to explore gene expression changes during infection of pigs by Salmonella. Thus while

the focus is not a comprehensive review of all possible approaches, we provide links and
information on both the tools we use as well as alternatives commonly available for tran-
scriptomic data collection and analysis of porcine immune responses. Through this review,
we expect readers will gain an appreciation for the necessary steps to plan, conduct, ana-
lyze and interpret the data from transcriptomic analyses directly applicable to their research

interests.

. Introduction

Host-pathogen interactions have been studied at the
olecular, cellular, tissue and organismal levels for many

ears (see, for example, the set of reviews in Current Opin-
on in Immunology, 2007, Vol. 19). At the transcriptomic
evel, a meta-analysis of microarray data detecting the

mmune response to many types of pathogens in different
uman cell types has shown that a core set of ∼500 genes
re expressed in response to viruses, bacteria (including
almonella) and immune stimulants such as LPS (Jenner
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and Young, 2005). Because of the ubiquity and ability
of Salmonella spp. to infect many important vertebrate
species, both animal models (Santos et al., 2001; van der
Sar et al., 2003) and cell culture systems (see below) have
been used to understand Salmonella interactions with its
host. Early immune responses are thought to be critical in
resistance to Salmonella (Wick, 2004), and a large num-
ber of genes have been implicated in the host response
to Salmonella (Detweiler et al., 2001; Rodenburg et al.,
2007). Many studies have used lipopolysaccaride (LPS) as
a model of the transcriptomic response to bacteria (Wells

et al., 2003; Bliss et al., 2005; Wurfel et al., 2005; Beck
et al., 2006). A direct comparison of the transcriptomic
response to LPS versus Salmonella showed significant sim-
ilarity in both the genes responding and the magnitude of
the response (Rosenberger et al., 2000).
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The cytokine protein and RNA responses to Salmonella
have also been studied in the pig; most parameters and
genes involved appear to be very similar to those in mouse
(Dvorak et al., 2006). Initial interactions of Salmonella with
the gut tissue have been studied in cell culture (Veldhuizen
et al., 2006; Skjolaas et al., 2007), but also in explants of
Peyer’s patch tissue (Hyland et al., 2006). In the latter study,
IL1B and IL8 RNA (but not TNF) were found to increase after
exposure to Salmonella enterica serovar Choleraesuis (SC)
for 2 h. In IPEC-J2 cells, an in vitro model of porcine jejunal
intestine, S. enterica serovar Typhimurium (ST) exposure
for 1.5 h increased RNA for TNF, IL8 and CCL20, but induc-
tion of these cytokines was not observed in cells exposed to
SC (Skjolaas et al., 2007). Using a separate porcine epithelial
cell line, exposure to ST for 24 h induced RNA expression
for the beta-defensin gene pBD-2 (Veldhuizen et al., 2006).

Immune responses of different types of porcine cells iso-
lated from whole blood have also been studied. The in vitro
response of pig peripheral blood mononuclear cells (PBMC)
to Salmonella or mitogen treatment was characterized by
increased IL2, IL4, and IFNG RNA, with no effect on IL10
expression, while bacterial F4 fimbrae increased expres-
sion of IFNG RNA only (Verfaillie et al., 2001). This group
also found cytokine protein levels generally correlated well
with RNA expression for the first 24 h of exposure.

Raymond and Wilkie (2004) investigated porcine T cell
responses to stimulated dendritic cells (DCs), finding that
the T cell response profile depended on how the DC was
stimulated and the cytokine milieu during stimulation.
They also evaluated monocyte and DC responses to specific
pathogen-associated molecular pattern (PAMP) molecules.
Treatment with LPS induced expression of TLR4 and T
helper 1 (IFNG, IL12p35), T helper 2 (IL13) and regulatory T
(IL10) cell response pathways. Cell-specific responses were
observed for several of these genes; MHC Class II expression
was greater after LPS stimulation in monocytes whereas
B7 RNA increased in both cell types (Raymond and Wilkie,
2005). In CD14+ cells isolated from pig spleen, LPS pre-
treatment was shown to decrease TNF and IL8, but not IL1B.
However, gene expression in response to re-application of
LPS indicated that pig monocytes undergo a similar LPS tol-
erance response (Cagiola et al., 2006) to that reported for
murine macrophages.

The RNA response of several Toll-like receptor and
chemoattractant genes to S. enterica serovar Choleraesuis
(SC) and S. Typhimurium (ST)inoculationof pigs has been
reported for a number of tissues (Burkey et al., 2007; Wang
et al., 2007, 2008b). Relative to uninfected controls, quan-
titative real-time PCR (QPCR) analysis showed ST infection
greatly increased IL8 expression in MLN and decreased
expression of MIF RNA in colon, while in SC infected ani-
mals, TLR9 and MIF were decreased in colon and MIF and
OPN were decreased in MLN (Burkey et al., 2007). Global
transcriptional responses to pathogenic infections in the
pig have been reported using microarrays (Afonso et al.,
2004; Ledger et al., 2004; Li et al., 2004; Miller and Fox,

2004; Moser et al., 2004; Niewold et al., 2005; Zhao et al.,
2006; Uthe et al., 2006; Uthe et al., 2007; Wang et al., 2007,
2008b; Tuggle et al., 2008) and multiple-gene and larger
scale QPCR methods (Raymond and Wilkie, 2004; Baltes
and Gerlach, 2004; Royaee et al., 2004; Dawson et al., 2005).
mmunopathology 138 (2010) 280–291 281

These studies (reviewed in Tuggle et al., 2007) have begun
to identify immune genes involved in the host’s response
to different pathogen infections. Taken together they have
contributed to a better understanding of molecular path-
ways relating to health and disease in pigs.

This review centers on our approaches to use such
transcriptomic data to unravel important pathways con-
trolling the porcine response to Salmonella. We will not
discuss recent publications on the host transcriptomic
response to viruses (Bates et al., 2008; Flori et al., 2008a,b;
Durand et al., 2009; Fernandes et al., 2009; Shi et al.,
2009; Li et al., 2010; Tomas et al., 2010), to mycobacteria
(Galindo et al., 2009), to Actinobacillus pleuropneumoniae
(Hedegaard et al., 2007; Moser et al., 2008), or to Toxo-
plasma gondii (Okomo-Adhiambo et al., 2006) infections or
to non-infectious stimuli or other contrasts (Dvorak et al.,
2006; Chowdhury et al., 2007; Nino-Soto et al., 2008a,b;
Ponsuksili et al., 2008; Wang et al., 2008a). However, these
authors used similar approaches to the broadly applica-
ble methods discussed below. We will also not describe
methods to measure miRNAs in tissues of immunologi-
cal importance, although recent reports have identified
miRNAs that are important in the immune response in
other species (Pedersen and David, 2008; Bi et al., 2009). A
number of reports have described miRNA identification in
several porcine tissues focusing on reproduction or muscle
development, although single papers have described isola-
tion of swine miRNAs from intestine (Sharbati et al., 2010),
or miRNAs potentially interacting with swine influenza
virus (He et al., 2009).

2. Steps in producing and exploring transcriptomic
data on immune response

2.1. Experimental design and tool choice—what question
do you want to ask?

The most important first step in transcriptomic anal-
yses (and in all experiments in fact) is to determine the
question to address. In many transcriptome studies, the
question is broadly exploratory, along the lines of “what
are the genes and pathways that respond to the pathogen
of interest in this tissue or cell type?” If so, then tools and
processes that capture accurate and sensitive information
on the largest numbers of transcripts for the lowest cost
are optimal. Because of the lack of available space and com-
plexity of these decisions for each lab, we cannot describe
all possibilities but will briefly review the main choices for
technologies in this area.

While we focus on the use of microarray technology to
collect transcriptomic data in this review, it is by far not the
only method, and other technologies such as Differential
Display (DD), Suppression Subtractive Hybridization (SSH),
and Serial Analysis of Gene Expression (SAGE) have been
used to identify differentially expressed (DE) genes during
the immune response in pigs (Tuggle et al., 2007 and ref-

erences therein). These latter technologies, especially DD
and SSH, require significant wet lab analyses, as many dif-
ferent combination of primers are required to survey the
transcriptome significantly. The popularity of microarrays
is due primarily for their breadth of coverage and relative
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ensitivity and simplicity over these other methods to gen-
rate global RNA profiles. More recent technologies such
s RNA Seq (Wang et al., 2009) have not yet been reported
n porcine immunogenomics, but a number of groups are
eveloping such data. It is anticipated that RNA-Seq and
imilar methods based on the new sequencing technologies
ill replace microarrays in the future, especially for initial

creening experiments, due to their anticipated lower cost
nd broader representation of the transcriptome.

In pigs, there are several options for collecting tran-
criptomic data and the best approach depends on the
evel of molecular and bioinformatic expertise available to
he lab. If such expertise is minimal, then data collection
sing a fee-for-service approach is probably most appro-
riate. One such option is the use of the Affymetrix Porcine
eneChip®, which requires only RNA preparation in one’s

aboratory; the RNA is then provided to a dedicated service
acility which many universities and research institutes
ave available. Expression data is provided by the Facil-

ty ready for statistical analysis as described below. If more
wet-lab” expertise is available, data collection can be less
xpensive, especially for a large project, through the use
f custom oligonucleotide arrays in one’s laboratory. cDNA
rrays have been replaced by such oligonucleotide arrays,
s synthesis costs have dropped significantly and algo-
ithms to minimize cross-hybridization have improved.
hus two major issues with cDNA arrays, the need for
ighly accurate clone and PCR product tracking during
rray production, and the concern of cross-hybridization
o common domains within multiple cDNAs, are signif-
cantly diminished for oligonucleotide arrays, which can
lso be created for less expense, at least on a per array
asis, than purchased arrays. However, in any such cost
omparison it is important to consider the labor and mate-
ials costs not only on the array production but also the
arget labeling, hybridization and data acquisition, so that
ll costs are recognized during the decision-making pro-
ess. Finally, there are hybrid approaches, where several
ompanies sell arrays for use in individual laboratories or
elected universities print arrays for use in labs nation-
ide, as is done for several of the swine long oligo arrays.

n pigs, sets of long (70-mer) oligonucleotides have been
esigned and validated for transcriptomics research in the
ast few years (Zhao et al., 2005; Steibel et al., 2009). Most
ecently, an oligonucleotide array, the Pigoligoarray, with
unctional annotation for 16,225 of the 18,524 porcine-
pecific oligonucleotides has been evaluated (Steibel et al.,
009). For the 4 tissues examined, the array was found
o be useful for accurate measurement of gene expression
n a global scale. In the work described below, we used
he Porcine GeneChip®, from Affymetrix, which has 23,937
robe sets with a total of 19,253 annotations currently (see
ection 2.3; Couture et al., 2009).

.2. Statistical analysis of microarray data
There are many excellent reviews of the various
pproaches to statistical analysis of microarray data
Quackenbush, 2001; Quackenbush, 2002; Roberts, 2008).
he MicroArray Quality Control (MAQC) project reviewed
ajor aspects of microarray data analysis in a special issue
mmunopathology 138 (2010) 280–291

of Nature Biotechnology (MAQC Consortium, 2006). The
following is only a short general synopsis of this topic and
focuses on our specific approaches to assess expression
response using transcriptomics. We do want to emphasize
that any experimental design should incorporate as much
biological replication as possible, while eliminating techni-
cal replication that had been thought to be important early
in the field but is no longer deemed important for microar-
ray analysis. The earliest statistical analysesof microarrays
depended on the experimental design of comparing two
differently labeled (Cy3, Cy5) samples hybridized to the
same array, thus many aspects of the technique that lead
to nuisance variation are diminished (Schena et al., 1995).
Such work compared levels of Cy3 and Cy5 expression,
setting an ad hoc x-fold difference in expression as the cri-
teria for declaring a gene as differentially expressed (DE).
In many experiments the design was a comparison of test
samples to the same control sample (the reference design).

However, an analytical approach based only on a fold
change filter is simplistic and an insensitive method to find
all differential expression. Experimental designs and data
analyses have become statistically more rigorous; details
can be found in the reviews listed above. In the work below,
we describe our analysis of Affymetrix-based data for
which company-provided software is used to produce an
estimate of expression for the transcript in question. First,
a unique Affymetrix algorithm combines the hybridization
signals for a set of probes to estimate the signal for each
transcript. The signal for each probeset across the Genechip
is normalized. Data normalization is a significant field in
its own right, and the type of normalization used depends
on the specifics of the microarray technology as well as
the kinds of questions to be answered (Quackenbush,
2002). Here we summarize normalization, carried out
in the following experiments, as the method to adjust
raw individual hybridization signals within a microar-
ray experiment so that results across biological replicates
can be combined. Such normalizations often involve an
adjustment based on the overall level of hybridization
across the microarray, although many refinements includ-
ing local background measurements and other methods
can be applied (Quackenbush, 2002). An ANOVA model
is then used to compare responses across time points or
treatments. As this method performs many thousands of
statistical significance tests at the same time, it is impor-
tant to correct for such multiple testing by estimating the
false discovery rate (FDR) (Storey and Tibshirani, 2003). The
FDR q-value provides an estimate of the likelihood that the
members of a list of differentially expressed are incorrectly
predicted to be DE; commonly used q-values are 0.01–0.1,
which indicate that no more than 1–10% of the genes are
false discoveries; i.e., the higher the q value the more likely
the gene is NOT differentially expressed.

2.3. Bioinformatics analysis of microarray data
2.3.1. Microarray element annotation
Once the genes that differentially respond to infection,

treatments, or other variables, have been identified, we can
proceed to explore specific biological questions of inter-
est. As shown in Fig. 1, several immediate analyses can
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view o
Fig. 1. Overview of transcriptomic/bioinformatics analyses. A schematic
transcriptomic data. See text in Sections 2.3.1–2.3.7 for details.

be envisioned. Because all these studies focus on pig gene
expression, it is important to remember that most of the
available tools rely on the transfer of gene function or anno-
tations to the array elements in the target species (in our
case, pig) from closely related and more widely studied
species, e.g., human or mouse, through sequence compar-
ison. If it is found that a pig sequence is sufficiently similar
to an annotated gene sequence in another species, com-
parative analysis can be used to predict the identity and
function(s) of the porcine transcript based on the anno-
tations associated with the matching sequences in other
species. Thus, it is critical to obtain the most up to date and
comprehensive annotation of the gene sequences on the
microarray.

We have recently assembled all available cDNA
sequences to create an Iowa Porcine Assembly (IPA)
which is a set of ∼140,000 consensus porcine sequences
and ∼105,000 singletons for all known pig mRNAs
(Fig. 2; Couture et al., 2009). We have annotated these
sequences using sequence similarity of the porcine con-
sensus sequence to those annotations reported for human,
mouse, rat, and bovine sequences in GenBank. These IPA
sequences were then used to annotate the Affymetrix
Genechip sequence elements; this resulted in excellent

annotation coverage (∼80%) of the Affymetrix elements.
We are now applying our IPA annotation to the Pigoligoar-
ray evaluated by Steibel and colleagues so that information
in the future can be more easily integrated across plat-
forms (Couture et al., unpublished data). These annotations
f approaches our collaborative group has developed to analyze porcine

will be updated when the draft porcine genome sequence
is released, which is expected in late 2010. These annota-
tions are available at www.anexdb.org, where a download
file provides up-to-date annotations of the major expres-
sion platforms for the pig. In addition, the AnexDB.org
website has been organized to assist in transcriptome
analyses; we have created data storage, analysis and GEO
submission tools (Fig. 2). This includes tools to store the
numerical data as well as sample preparation, hybridiza-
tion protocols and data collection details. Such data can
be kept completely private in the database until publi-
cation. Most journals now require that all publications
reporting microarray data must make available the Min-
imal Information About a Microarray Experiment (MIAME)
information. At AnexDB.org, we provide tools that auto-
mate much of this analysis pipeline, including generation
of the correctly formatted ‘soft’ file containing all MIAME
information required for NCBI-GEO submission of microar-
ray data.

2.3.2. Embedding the microarray results into current
literature

A first step for transcriptomic experiments is to com-
pare the list of DE genes with the current literature. This

primary step can help integrate the microarray data with
known responses at porcine immune response genes. This
can be done by individually checking genes for available
functional investigations by other groups in PubMed. Using
annotation information for the gene symbol of the tran-

http://www.anexdb.org/
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ig. 2. Schematic diagram of the major parts of the ANEXdb.org website
ection 2.3.1 for details on the main functions of this bioinformatic resou

cript of interest, a researcher can easily access relevant
enome, cDNA and functional information that has been
ntegrated at a number of databases. The most compre-
ensive of these genome browsers are those available
t the NCBI web portal (www.ncbi.nlm.nih.gov) and the
MBL web portal (www.ensembl.org/index.html). Partic-
larly for the porcine genomics community, the latter site
as excellent resources for the analysis of the pig genome
see http://www.ensembl.org/Sus scrofa/Info/Index). Our
roup has found the Online Mendelian Inheritance in
an (OMIM) database (www.ncbi.nlm.nih.gov/OMIM) and

he Online Mendelian Inheritance in Animals (OMIA)
www.ncbi.nlm.nih.gov/omia) to be especially useful as a
tarting point to learn about specific genes. OMIM con-
ains extensive information on the structure, function,
nd phenotypes of known mutations in human genes and
heir counterparts in model organisms. However, the real
alue of microarray analyses is the power of measuring
ene expression of so many genes that the responses of
mportant pathways and networks can be recognized and

easured, as described below.

.3.3. Function clustering and analysis using Gene
ntology and other gene annotation databases

Once individual genes in a list of differentially
esponsive transcripts have been compared to available

iterature, a new type of exploratory analysis of these
enes can be performed. An important question to ask
f the data is: are there known functions or other
ttributes—annotations—for genes in this list that are over-
epresented compared to a background list of genes? In
tabase for porcine transcriptomic data storage and analysis. See text in

other words, what are the enriched biological ‘signatures’
or ‘clues’ hidden in this list that can help one understand
the immune response represented by the list? The most
widely used set of annotations are those provided by the
Gene Ontology (GO) Consortium, which applies a set of
descriptive terms from a defined vocabulary to genes for
which some functional data is available. Terms covering
three descriptive areas are available: Biological Process,
Molecular Function, and Cellular Component.

To determine all annotations for a set of genes,
there are a number of software tools that are avail-
able. These are proprietary packages (such as Ingenuity
or GeneSpring), software available as downloadable local
programs (such as GoMiner; http://discover.nci.nih.gov/
gominer/index.jsp), as well as free web-based tools, such
as the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) created by NIAID scientists
(http://david.abcc.ncifcrf.gov/) (Dennis et al., 2003). While
DAVID provides a number of different analytical tools, we
have primarily used DAVID to annotate lists of genes in
whole blood responding to Salmonella infection (Huang et
al., manuscript in preparation) as well as a number of our
other projects (Lkhagvadorj et al., 2009; Lkhagvadorj et al.,
2010). In the DAVID on-line tool, one uploads a list of genes
to analyze as well as a background gene list. The DAVID tool
can calculate the frequency of GO terms associated with

all genes in the uploaded list, and calculates those terms
that are over-represented relative to the background. Over-
representation of other gene annotations, such as KEGG
pathways, Protein Information Resource (PIR) information,
etc., can also be calculated depending on user specifi-

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/index.html
http://www.ensembl.org/Sus_scrofa/Info/Index
http://www.ncbi.nlm.nih.gov/OMIM
http://www.ncbi.nlm.nih.gov/omia
http://discover.nci.nih.gov/gominer/index.jsp
http://david.abcc.ncifcrf.gov/
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cations; a recent detailed description of current DAVID
functionality is available (Huang da et al., 2009). We have
also developed our own specific list of GO terms related to
specific immune pathways and functions (a GO-Slim) by
using OBO-edit and used it to develop a better understand-
ing of the immune-response specific pathways in gene
lists responsive to Salmonella infections (Wang et al., 2007,
2008b).

A comment on the selection of the ‘background’ list
of genes is warranted. The default for this list in DAVID
is the human genome; this may be inappropriate for any
porcine gene list, but especially for those lists created from
microarray platforms for which there is either incomplete
genome coverage or non-random selection of elements
representing transcripts on the array. The modified Fisher’s
Exact test calculations used by DAVID to determine over-
representation—finding a higher frequency of terms in a
specified list as compared to the background—depends on
the assumption that the background is a set of genes that
has a chance to be included in the differentially expressed
list. For example, if many genes with a specific term such
as “immune response” are present at 10% in a list of genes
responding to LPS in macrophage cells, but present at much
lower levels in a list of all human genes, this would be
returned as an over-represented term. However, it is likely
that many of the genes in a human genome background
list, contributing to the overall frequencies of GO terms in
that list, were not expressed in immune cells and could
not be in the DE list. Thus it is more appropriate to use
the largest set of genes that could have been in the DE
list: the transcriptome for the tissue or cell type under
study. Therefore we define our transcriptome, and thus our
background list, as all those genes that show at least one
hybridization signal above background across our entire set
of Affymetrix chips for the tissue of interest. By using GO
enrichment approaches such as these, we have shown that
annotations for genes up-regulated in mesenteric lymph
node from animals infected with SC are enriched in apopto-
sis, innate immune response and defense response terms,
while annotations for down-regulated genes in these tis-
sues are enriched in cell adhesion and calcium ion binding
terms (Wang et al., 2008b).

2.3.4. Expression clustering to find genes with similar
transcriptomic response to infection or stimulus

Depending on the type of experiment, a second valu-
able global analysis approach is to identify groups of genes
that respond similarly to infection or immune stimulation
at the RNA expression level. Several methods are available
to ‘cluster’ genes by expression pattern across experimen-
tal samples. Such clustering methods (Belacel et al., 2006)
can be broadly classified into (a) hierarchical methods or
model based methods e.g., probabilistic mixture models
(Medvedovic and Sivaganesan, 2002), and (b) model-free
methods e.g., spectral clustering (von Luxburg, 2007). In
each of these categories, clustering algorithms can gener-

ate different types of clusters e.g., non-overlapping clusters
of data points or hierarchical organization of clusters. Each
class of methods has its own advantages and disadvantages,
requiring care in the choice of specific methods in specific
settings (Belacel et al., 2006); we have primarily relied on
mmunopathology 138 (2010) 280–291 285

hierarchical clustering, which work well for time course
data such as response after infection. Clustering techniques
can be particularly powerful for a time course experiment,
as not only can expression pattern gene clusters be iden-
tified, but inferences can be made as to cause and effect
during the immune response. Further, combining expres-
sion clustering with GO annotation of specific clusters can
be very illustrative. One can find enriched functions that
may identify specific pathways activated (or repressed) at
specific times, allowing inference of multi-stage gene-gene
interactions. For example, a seminal paper in the use of
systems biology tools in immunology showed that expres-
sion clustering could identify murine regulatory pathways
controlling the response to LPS (Gilchrist et al., 2006). This
group showed that specific transcription factors (TF) in a
cluster of up-regulated genes early in LPS treatment of
mouse macrophage cells in culture controlled the expres-
sion of other sets of genes that clustered together with a
maximal response later than the TF-dominated early clus-
ter.

We have used GeneCluster software to identify sets of
genes and their functions responding similarly to infection
in mesenteric lymph nodes of SC inoculated pigs (Wang et
al., 2008b). As illustrated in Fig. 3 using TreeView software,
we detect large clusters of genes down-regulated (Groups
A–B) or up-regulated (Groups C–F) at one or more time
points during infection. Group A genes, down-regulated
for the first 24 h post infection, are over-represented for
ribosomal annotations, while Group B genes, only down-
regulated by 48 h, are enriched for extracellular matrix
proteins (Fig. 3).

2.3.5. Using promoter sequences of co-expressed genes to
find common regulatory motifs

Genes with a similar response to an immune stim-
ulus are co-expressed, and may be co-regulated; i.e.,
there may be a common regulatory factor controlling this
co-expression response. To look for evidence of a com-
mon regulatory factor controlling multiple genes in a list,
one approach is to search in the promoter DNA of such
genes for over-represented sequence motifs known to
mediate TF action. At the time of writing, the porcine
genome community was close to completion of a full
draft sequence for the pig, but the location of promot-
ers near porcine genes has not yet been established.
Due to lack of knowledge of promoter sequences for
the pig, we developed perl scripts to obtain the orthol-
ogous human promoter sequences for porcine genes
shown to be differentially up-regulated due to SC infec-
tion. Within these human promoters, we searched for
TF motifs using the TransFac database (http://www.gene-
regulation.com/pub/databases.html), as well as both TFM
Explorer (Defrance and Touzet, 2006) and Clover (Frith
et al., 2004) packages to determine over-abundance of
motifs in the Group E set of genes (Fig. 3) that were up-
regulated by 8–24 h post-inoculation (Wang et al., 2008b).

We identified 95% of known NFkB-regulated genes in the
Group E gene list, as well as 51 genes that have not pre-
viously been shown to be bound by NFkB. Similar results
with slightly lower percentages were obtained for a set of
genesup-regulated only by 48 hpi. These porcine genes that

http://www.gene-regulation.com/pub/databases.html
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dapted from Wang et al. (2008b).

ere co-expressed with many known NFkB target genes
activated early in infection) and with NFkB motifs near
heir orthologous human promoters are proposed to be
reviously unrecognized members of an NFkB-dependent
egulatory pathway responding to SC infection (Wang et
l., 2008b).

.3.6. Using ‘Knowledgebase’ text-mining tools to
fficiently mine the available literature.

Once you have a list of genes that have some common
ttribute such as a co-expression pattern or common func-
ion, searching the voluminous primary literature to find
ommonalities among gene list members is of interest but
n extremely time-consuming task. We have found value
n using a text-mining software tool, such as Pathway Stu-
io (Ariadne Genomics, Inc.), which accelerates the process
f such literature searches, and can provide new insight
s well. This software accepts a list of genes/proteins and
earches a proprietary database that holds published infor-
ation on relationships between genes, between proteins,

s well as gene-protein, small-molecule-gene interactions,
tc. It is possible to select a specific type of relationship to
earch for, such as “direct-regulator of”, and specify only
hose genes/proteins that regulate two or more genes in
list. This would be an example of a search for a “com-
on regulator” of the genes in the list. We recently used

athway Studio to find the known targets of the NFkB regu-
atory complex in a list of genes up-regulated by SC early in

nfection (8–48 h post infection: Wang et al., 2008b). This
nformation was then used to inform further exploratory
nalyses such as those described above for gene regulatory
etworks. While we could have found such information by
earching many published articles, the software was able to
find co-expressed clusters of genes and the general functions represented

dramatically cut down the time required for such searches,
while providing a level of comprehensiveness and a repeat-
able methodology to the search. A number of other Pathway
Studiorelationship filters, such as “common target” (to look
for common functions of the gene list), or relationships
within the gene list (to look at molecular or regulatory
interactions among list members) are available. Further-
more, the software can create publication-quality figures
depicting such relationships (Wang et al., 2008b).

2.3.7. Immune network analysis in silico—toward
systems understanding of immune response

A higher level analysis that can integrate several of
the above datasets is systems biology (Klipp et al., 2005;
Bruggeman and Westerhoff, 2007; Gardy et al., 2009). For
example, using a network analysis approach, an immunol-
ogist could use visualization tools such as those available
in Cytoscape (www.cytoscape.org/) or InnateDB (Lynn et
al., 2008; www.innatedb.org), to take datasets from many
gene expression experiments and, combined with other
data such as protein-protein interaction data, use corre-
lations among datasets to draw network diagrams that
illustrate the connections between genes (Gardy et al.,
2009; Zak and Aderem, 2009). A network diagram, where
genes are the nodes and the relationship between any
two genes are the edges drawn between those nodes, can
help visualize important genes in the immune process;
such important genes may have much higher number of

connections than on average and are called “hubs” in the
network. As well, networks are often drawn such that the
edge lengths are related to the correlation values used to
create the network; for example, two genes with very sim-
ilar patterns of expression across many treatments would

http://www.cytoscape.org/
http://www.innatedb.org/
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Table 1
Number of Affymetrix Porcine GeneChip® probesets showing significant differences in expression in whole blood for contrasts shown.

Criteria Shed by time Shed (at t0) Shed (at t2) Time (in LS) Time (in PS)

number

ulation.
Recently, we have initiated work to identify genes dif-

ferentially expressed between pigs with different infection
outcomes. We infected 40 individual pigs with ST, and

Table 2
Gene ontology annotation of infection response genes shows distinct dif-
ferences in persistent shedding and low shedding animals.

Persistent shedders (PS)
Generally: intracellular response genes
↑ Response to biotic stimulus, immune resp.
↑ Proteasome, endopeptidase activity
↑ Protein catabolism
↑ Protein kinase cascade, reg. of NFkB cascade
↑ Programmed cell death, apoptosis
↑ Immunoglobulin domain
↑ Vacuole/lysozyme/lytic vacuole
↑ TOLL receptor signaling, NFkB/IL1R sig.
↑ Multiple sclerosis/diabetes/arthritis
↑ SH2 domain
↑ Pleckstrin
↑ Asthma/lupus-Genetic Assoc
↑ CHOLERA-Genetic Assoc

↓ Signal peptide
↓ Intrinsic to plasma membrane
↓ Signal transducer, receptor activity
↓ Extracellular matrix
↓ Morphogenesis, organ morphogenesis
↓ Cell–cell signaling
↓ Fibrinogen alpha/beta/gamma
↓ Ion channel activity
Low shedders (LS)

Generally: extracellular response genes
↑ Signal peptide, cell communication, receptor
↑ Response to biotic stimulus, immune resp.
↑ Integral to plasma membrane
↑ Extracellular matrix
↑ Cell–cell signaling, structural component
↑ Carbohydrate/heparin binding
↑ Angiogenesis
↑ Tissue/organ development/remodeling
↑ Fibronectin type III
↑ Organ morphogenesis

↓ Cell cycle, M phase
↓ Nucleosome, nucleus/nuclear protein
↓ Nucleic acid binding, reg. of biol. process
q < 0.05 1442 0
q < 0.10 3308 0

t2: 48 h post inoculation LS: low shedder PS: persistent shedder. q value:

have a very short edge length connecting the two nodes.
Sets of similarly responding genes across different condi-
tions would cluster in the network and show a high level
of connections in a small three-dimensional space. Such
approaches can be powerful methods to uncover cryptic
networks; the larger and more integrated the datasets, the
more powerful the method becomes. Systematic collection
of specific immune cell type transcriptomes (Hyatt et al.,
2006), and a network analysis of these data and immune
response data is being used in human and mouse immunol-
ogy to move toward a “systems biology” understanding of
innate immune responses (Heng et al., 2008; Gardy et al.,
2009; Zak and Aderem, 2009). While not used as of yet in
livestock transcriptomics, we predict broader use of sys-
tems biology approaches in animal species as relevant and
useful data accumulate.

2.3.8. Hypothesis generation and testing
The analyses (as described above in Sections 2.3.1–2.3.7)

can guide hypothesis generation, an important outcome of
microarray experiments (Fig. 2). There are many possible
paths through the above tools to come to a hypothesis to be
tested; it is also possible to develop a hypothesis based on a
single such analysis. As discussed above, we found in Wang
et al. (2008b) that many genes that were up-regulated in
the first 8–24 h post SC infection are known to be involved
in the innate inflammatory response, and about ∼25% were
also previously shown to be regulated by NFkB. We then
showed that the majority of the Group E genes do have
NFkB regulatory motifs in the promoters of their human
orthologs (Wang et al., 2008b). Thus we hypothesize that
many of the remaining Group E genes, co-expressed with
known NFkB target genes, may in fact be regulated by NFkB;
most of these genes were not known to be NFkB targets dur-
ing infection. We are currently testing a number of these
genes for their response to LPS in culture and the depen-
dency of this response on NFkB signaling (Couture et al.,
data not shown).

3. Use of transcriptomics to find genes associated
with quantitative disease resistance traits

In the last few years, RNA profiling has been used to
investigate not only the common RNA response to infec-
tion across biological replicates, but also the variation in
response to LPS treatment among individuals in a popula-
tion or across inbred strains (Wells et al., 2003; Wurfel et
al., 2005; Beck et al., 2006). Different inbred mouse strains

showed significant differences in pathway response to LPS
challenge (Wells et al., 2003). In an attempt to understand
modifiers of human innate response differences to LPS in
whole blood ex vivo, Wurfel et al. (2005) tested blood from
102 donors, incubating the blood with LPS and measur-
243 171 3379
1313 837 4992

of genes with False discovery controlled at 5% or 10%.

ing levels of 7 cytokines released. They then selected high
(n = 3) and low (n = 3) LPS responders (in terms of cytokines
released) and profiled whole blood RNA using a human
Affymetrix array. This approach enabled them to identify
80 LPS-responsive genes as well as 36 genes differentially
expressed between high and low responders before stim-
↓ Microtubule organizing center
↓ RNA localization, RNA splicing
↓ Response to DNA damage stimulus
↓ Chromosome segregation
↓ Cellular processes—phys., metabolic
↓ Zinc finger, ion binding
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f 448) showing high up-regulation response to infection in low shedders
nimals (PS −1.5). The response of such genes to infection is dependent o
uch genes may be useful in understanding variation in immune respons

easured numbers of shed bacteria up to 21 days post-
noculation (dpi, Uthe et al., 2009). Four pigs showed
hedding only up to 7 dpi, with relatively low numbers
f bacteria shed (low shedder phenotype, LS). On the
ther hand, six pigs shed continuously throughout the
est period (Persistent Shedder phenotype, PS). In these
0 animals, we have profiled using Affymetrix technol-
gy the peripheral blood RNA before infection (t0) and
t the early inflammatory stage (48 hpi, t2) when all ani-
als are shedding bacteria (Huang et al., manuscript in

reparation). Interestingly, we find significant numbers of
ifferentially expressed genes in whole blood between LS
nd PS animals at t2, and many genes also show differ-
ntial expression during infection in both shedding types
Table 1). Less that 5% of these expression differences are
orrelated with the numbers of different cell types as mea-
ured in complete blood counts (CBCs), indicating that
ifferential expression is not due to changes in cell pop-
lations (data not shown). To characterize pathways and
unctions associated with these phenotypes, we selected
enes up-regulated or down-regulated in either Low or
ersistent shedders and annotated these genes to iden-
ify Gene Ontology functions over- or under-represented
n these gene lists (Table 2). This analysis found striking

esults. First, blood from animals with a PS phenotype has
ncreased intracellular-oriented responses and decreased
xtracellular-oriented responses (data not shown). Second,
he blood of LS phenotype animals had a nearly opposite
esponse; with increased expression of gene annotated in
ective immune response pathway. For example, nearly 50% of genes (215
) are in common with high down-regulated genes in Persistent shedding
ass of animal (LS or PS) in which they are present. The global function of
onella.

extracellular signaling pathways (Huang et al., manuscript
in preparation).

Of special interest is the large number of genes that
show significant shed by time interaction, indicating the
response to infection (time variable) depends on which
phenotypic class is examined (Table 1). To find the
genes that show high differences between the pheno-
type classes, genes with significant shed x time interaction
(q-value < 0.1) were sorted by Fold Change (FC) for time
(response to infection), separately for LS and for PS ani-
mals. Four lists were prepared (FC > +1.5 and FC < −1.5 for
each phenotype) and these lists were examined for over-
lap (Fig. 4). While it is expected that genes with significant
shed by time interactions would show different expression
between classes, the large numbers of genes with oppo-
site expression patterns (totaling 348 genes; Fig. 4) clearly
shows that the immune pathways measured in blood are
strikingly different between these two phenotypes. We
believe that these genes may indicate pathways controlling
a more effective immune response to Salmonella infection,
as their expression pattern correlates with bacterial load
as measured by fecal shedding, and we plan to carefully
study these genes for their roles in controlling variation in
disease phenotypes during bacterial infection.
4. Summary and future

Clearly the porcine immune response community is just
starting to use the tools of trancriptomics and boinformat-
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ics to unravel the intricacies of host-pathogen interactions.
If we can look to human and mouse studies as a guide, there
are tremendous advances in store for researchers using
such genomic approaches to study and manipulate porcine
immunology and immunogenetics. With the increased use
of high-throughput sequencing approaches, researchers
will have access to whole-genome datasets with little to
no technological limitations in the biological interpretation
of the data. The limitations will be only in the imagina-
tions of the scientists to design the optimal experiments to
take advantage of these truly extraordinary opportunities
for advancing molecular, cellular, and physiological knowl-
edge and to turn such knowledge into understanding and
practical application.
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